[PyTorch] Softmax Classification 실습 : 모두를 위한 딥러닝 시즌2
Softmax 분류 이론 요약 이전 포스팅에서는 sigmoid 함수로 H(x)를 계산하고, binary_cross_entropy 함수를 활용하여 Cost를 계산했다. 이 방법은 이진 분류 문제에 적합하다. 이번에는 다중 클래스 분류 문제에 적합한 방법을 알아보았다. 간단하게 핵심을 정리하면 softmax 함수로 H(x)를 계산하고, cross_entropy 함수를 활용하여 Cost를 계산한다. softmax 함수는 여러 개의 실수로 이루어진 벡터를 확률 분포로 변환하며, cross_entropy 함수는 실제 레이블(one-hot 벡터)과 예측한 확률 분포의 차이를 구할 때 사용한다.Softmax 분류 구현 코드라이브러리 import & 시드값 고정# Library importimport torchimp..
2024.09.07